
Partitionability of the Multistage Interconnection Networks

Yeimkuan Chang
Department of Information Management

Chun-hua Polytecnic Institute
Hsinchu, Taiwan R.O.C.

E-mail: ychang@cs.tamu.edu

Abstract - Partitionability allows the creation
of many physically independent subsystems, each of
which retains an identical functionality as its parent
network and has no communication interference with
other subsystems. We show that different permutation
functions connecting the processors and the switches
in the last stage of networks result in different par-
titionability. Based on a novel mapping scheme of
MINs onto the hypercube structure, we show that the
switches play a more important role on the subsys-
tem availability than the processors. Subsystem fault
tolerance of this class of MINs is also analyzed.

1 Introduction
Numerous MINs have been proposed for con-

necting multiple nodes in a multiprocessor. MIN’s
increasing popularity is related to their low cost com-
pared with that of a full crossbar at a reasonable band-
width. A class of MINs including baseline networks,
regular SW banyan networks with spread and fanout
of 2, indirect binary n-cube networks, and Omega net-
works have been shown to be topologically equivalent
[l]. The IBM SP1/2 [2], CM-5l [3], and the BBN But-
terfly [4] are good examples of multiprocessors that
employ a MIN [5].

In a multiprocessor system, there is a possibility
that a single task will degrade other tasks’ executions
by creating a hot spot in switching elements (SEs) and
links. This situation can be further aggravated by a
bad processor allocation scheme that does not utilize
the interconnection network efficiently and uniformly.
Therefore, it is advantageous to schedule the indepen-
dent tasks to different portions of the system such that
there is no communication interference among them.

The underlying theory of partitioning permutations
is addressed in [6]. The partitionability of the baseline
network, the generalized cube network, the indirect
binary n-cube network, and the Omega network has
been addressed in [7, 8, 91. However, the impact on

]The fat-tree architecture used in CM-5 is actually a MIN.

the network partitionability of different physical con-
nections between processors and SEs in the last stage
is generally ignored. The partitionability of two rep-
resentative networks with 2n processors, namely the
indirect binary n-cube (called n-icube) and the Butter-
fly network (called n-Butterfly), is analyzed and com-
pared in this paper.

The remainder of this paper is organized as fol-
lows. In Section 2, The partitionability of two groups
of MINs based on the permutation functions between
the processors and switches in the last stage of the
networks is studied. A novel mapping scheme of these
two groups of MINs onto the hypercube is developed.
In Section 3, the SE fault tolerance analysis is given,
Concluding remarks are given in the final section.

2 Partitionability of MIN
The permutation functions describing the con-

nections between the processors and SEs in the last
stage of an n-icube and an n-Butterfly are the ”in-
verse shuffle” connection and ” trivial” connection, re-
spectively. Figs. 1 and 2 illustrate the interconnections
of a 4-icube and a 4-Butterfly, respectively. In Fig. 1,
processors 0 to 7 form a subnetwork which does not
interfere with the other part of the network. The cor-
responding processors in the 4-Butterfly of Fig. 2 are
processors 0 to 3 and 8 to 11, shown a t the top half of
the network. It can be seen that these eight processors
in Fig. 2 also form a subnetwork without interference
to other parts of the network. But, potential hot spots
may take place on the links between stages 2 and 3.
Another possible way to form a sub-Butterfly of eight
processors is shown as solid lines in Fig. 2. Proces-
sors 0, 8, 1, 9, 6, 14, 7, and 15 can form a subnetwork
without interference and hot spot links. The n-icube
and the n-Butterfly differ in partitionabilities that re-
sult from different permutation functions between the
last stage and processors. We will show systemati-
cally that different physical connections between the
last stage and processors lead to different partition-
ability.

1063-7133/96 $5.00 0 1996 IEEE
Proceedings of IPPS ’96

644

mailto:ychang@cs.tamu.edu

Figure 11: The 4-icube.

In general, a set of interconnection functions are
used to describe the connectivity of the interconnec-
tion paths between the SEs. A processor in a network
of 2n processors is represented as P(p,- 1 . . .plpo). The
label of an SE in stage i is (p n - l . . ~ p l) i or (pn-2 ...pO)i.
The interconnection function of a MIN, Ir [(pn. - . l . . .p l)]

= (t n - l ... t l) i + l denotes the link from output port a!

(0 or 1) of S E (p , - l . . P I) { to S E (t n - l ... t l) i + l . For
consistency, P (p , - l . . .PI 0) and P (p n - l . . .PI 1) are de-
noted as I!! l [(pn- l . . . p 1) - 11 and I: l [(pn- l . . . P I) - 13 , re-
spectively. The forma,l definition of the n-icube is first
given as follows.

Definition 1: The n-icube is defined as follows:
For the links preceding SEs in stage i (0 5
i 2 IZ - I), Nio_, [(p , - l ... p i) i - l] = (pn-1.. .0i . . .pi)i

and N:!l [(p n - l ...p l) i -1] = @,-I . . . li.. .p& , from
output ports 0 and 1 of SE(p n- l . . .p l) i - - l to
SE(p,-1 ... Oi . . .p l) i and S E (p , - l ... l i . . . p l) i , respec-
tively.

For the links between SEs of the last stage and the
processors, N , - l [(p , _ - l . . . p l) , _ l] = P(Op, - l . . .p 1) and
N n - l [(p n - l . . . p i) , - l] = P(l p n - l . . .p I) , from output
ports 0 and 1 of SE(p, , - l . . .p to P(Op,-l . . .p I)
and P(lp,- 1.. . p l) , respectively. R

Because Butterfly inetworks have different connec-
tions between the last stage and the processors, the
addresses of processors need to be renumbered in or-
der to implement correctly the n-icube self-routing
scheme. The SEs are numbered in the same fashion
as in the indirect n-cube, i.e., as 0 to 2"-l - 1, from
top to bottom. The processors are numbered 0, 2 " - l ,

I, 1 + Y - l , ..., i, i + 2 " - l , ..., 2"-l - 1, 2" - 1 ; i.e.,
processors Opn-2 ...PO and 1pn-2 ...PO are attached to
SE(p,-2 . . .po)o. Thus, (pn-2 .. .pol; is assigned to an
SE in stage i as its address. The formal definition of

1

Figure 2: The 4-Butterfly.

the n-Butterfly is given as follows.
Definition 2: The n-Butterfly is defined as follows:

For the links preceding the SEs in stage i (0 5
i 5 n - I) , Bdq- l [(pn-2 . . .p~) i -11 = (~ ~ - 2 . . . O i - - 1 . . . ~ 0) i

and Bdl_l [(pn-2 . . . p ~) i - - l] = (pn--2.. . l i - 1 . . .PO); from
output port 0 and 1 of SE(p,-z ...po)a-1 to
SE(p,-2 ... Oi- 1.. .PO); and SE(p,-2.. . l i - 1.. .po)i , re-
spectively.

For the links between SEs of the last stage and the
processors, B ~ - 1 [(p n - 2 . . . p ~) n - 1] = P(Op,-2 . . .p 0) and
B,- 1 [(pn-z. I .PO),- 11 = P(lp,- 2 . . .PO) from output
ports 0 and 1 of SE(p,-2 . . . p ~) , - ~ to P (0 p , - 2 . . . p ~)
and P(lp,-2 ...PO), respectively.

The physical connections between stages in these
two networks are exactly the same. The only dif-
ference occurs in the permutation functions between
the SEs of the last stage and the processors. The
Don't-Care symbol (*) is used to denote 0 or 1;
i.e., (Op,-a ...PO) and (lp,-2 . . .pa) can be denoted as
(*pn-2 ...p 0) . The SEs can be set to either straight or
cross state.

Theorem 1: In an n-icube with the SEs in
stage i set to the straight state, P(*,+1...a!i ...*o),
SE(*,-l ...ai... *j+l * j - l . . .*o) j for j = O . . . i - 1 , and
SE(*,-l ...*j+l*j-l...a!i...*O)j for j = i+ l ... n-1 form
an (n - 1)-cube where a! = 0 or 1 and 0 5 i 5 n - 1.

1

Proof: see .[IO].

Fig. 1 shows an example of a 4-icube with n = 4
and i = 3. The two 3-icubes shown in Fig. 1 are
marked by solid and dotted lines. These two 3-icubes
are obtained by setting the SEs of the last stage to the
straight state. There exist n pairs of disjoint indirect
binary (n - 1)-icubes in an n-icube. Theorem 1 can
be applied recursively to obtain subcubes of smaller
sizes. The SEs utilized by a d-icube can be derived as

645

Figure 3: The mapping between SEs of an 4-icube and
links of a direct 4-cube.

follows.
Theorem 2: A d-icube (qn-1...qo)2 for d 2 1 con-

sists of SE(q,-1 ... q;+lqi-1 ... q0)i for all i = 0 to
n - 1.
Proof: see [IO]. w

The foregoing theorem simply states that the ad-
dresses of SEs in stage i employed in a d-icube are ob-
tained by removing the ith bit of the ternary address
of the d-icube. As an example, the 2-icube (1*0*) in
a 4-icube consists of (1) SE(1tO)o; i.e., SEs 4 and 6 of
stage 0, (2) SE(1+*)1; i.e., SEs 4, 5, 6, and 7 of stage
1, (3) SE(10*)2; i.e., SEs 4 and 5 of stage 2, and (4)
SE(+O*)S; i.e., SEs 0, 1, 4 and 5 of stage 3. In general,
a d-icube utilizes d ~ 2 ~ - l + (n - d) ~ 2 ~ SEs, Z d - l SEs
from each of the d stages and 2d SEs from each of the
other n - d stages.

Now we illustrate the relationship between a direct
binary n-cube and an indirect binary n-cube. In an n-
cube, a link is connected between two nodes if and only
if their addresses differ in exactly one bit. We label the
link connected to a processor . . . p 0) along dimen-
sion i in an n-cube as (p,-1 . . .p i+lp;-l ...PO) ;. Accord-
ing to Theorem 2, the SEs employed by P(p,-l . . . p 0)

are SE(p,-1 . . . p itlpi-1 . . .po)a. Thus, there is an one-
to-one mapping between the SEs of an n-icube and
links of an n-cube. The SEs in stage i of the n-icube
corresponds to the links along dimension i of the direct
n-cube. Based on this mapping, the SEs in a d-icube
of an n-icube are essentially the ones corresponding to
the links which are incident to the processors of the
d-icube.

Example 1: Fig. 3 shows the mapping between
SEs of a 4-icube and the links of a 4-cube, where the
SEs are labeled besides their corresponding links. The
SEs (links) of the 3-icube (O w *) are marked as solid
lines.

Theorem 3: With the SE(p,-2 . . .po) i set to

’Throughout the paper, p , denotes a binary bit; i.e., p , E
{ O , l } and q, denotes a ternary bit; i.e., q, E {0,1, *}.

the straight state if pi @ pd-1 = 0 and to
the cross state if pi @ pi-1 = 1 in an n-
Butterfly (@ is exclusive-or), P(*,- 1.. .ai& 1.. .*o),
P(*n-l...(ydiji-l.*o), SE(*,_2...a;P;_1...*o)j, and
SE(*,-2 . . . z z . . . * o) j , for j = l . . .n - 1 and j # i,
form an (n - 1)-Butterfly, where aiPi-1 = 01 or 00,
and 1 5 i 5 n - 2.

Proof: see [IO]. w
From the above theorem, we shall see that the n-

Butterfly has less partitionability compared to the TI-

icube. The two (n - 1)-Butterflies obtained by Theo-
rem 3 are completely disjoint. There exist n - 2 pairs
of disjoint (n - 1)-Butterflies in an n-Butterfly as op-
posed to n pairs in an n-icube3.

Fig. 2 illustrates an example with n = 4 and i =
2. One 3-Butterfly consisting of processors *OO* and
11 are shown in solid lines and the other 3-Butterfly
consisting of processors *01* and *lo* are shown in
dotted lines. These two 3-Butterflies are obtained by
setting SEs 0, 1, 6, and 7 to the straight state and SEs
2 , 3 , 4, and 5 to the cross state in the 2nd stage.

Theorem 3 can be applied recursively to obtain sub-
networks of smaller sizes. However, because of the
characteristics of the Butterfly networks, how to ob-
tain the subnetworks of smaller sizes in the n-Butterfly
is not as simple as the n-icube. In order to formally
represent the subnetworks of an n-Butterfly, we need
the following definitions.

Definition 3: The symbol *(i) is defined as a set
of two i-bit binary strings which are complementary
to each other, namely *(i) = {pi-1 ...p~,pi_l...E}. We
refer to *(i) as an i-bit Don’t-Care string. If the value
of p i -1 ...PO is known, *(i) may be explicitly repre-

Example 2: The Don’t-Care string *(3) may rep-
resent the set (000, ill}, (001, 110}, (010, 101}, or
(011, 100). Here, * (OOO) and *(111) represent the
same set, (000, 111). We can see that *(O) and *(1)
represent (0, 1) which has the same meaning as the
conventional Don’t-Care symbol (*). If no confusion
occurs, * is used to denote * (O) and *(l) . We refer to
*’ as i consecutive *’S.

Based on the above definition, the processors of the
two (n - 1)-Butterfly obtained by Theorem 3 can be
represented as *fl-i-l*(OO)*”l and *n-i-l*(Ol)*i-l
(1 5 i 5 n - a), which consists of n - 1
Don’t-Care strings. As a result, a d-Butterfly can
be obtained by applying Theorem 3 recursively as

sented as * (p i - l . . . p o) .

(id- i)(id-Z)*(id-3). ..*(il)*(&~), where i d - 1 = 1 and

31f we consider bi-directinal links used in IBM SP1/2, one
more pair of subnetworks of size 7t - 1 can be formed by using
turnaround routing.

646

Figure 4: The mapping between SEs of a 4-Butterfly
and links of a direct 4:-cube.

j = d - 1 cj=o i j = n. It essentially states that a d-Butterfly
is obtained by dividing the n-bit binary string into
d substrings. Each substring represents a Don't-Care
string.

P(P,- 1.. .PO), P(P,Zpn -2.. .PO) , P (E . . .E) , and
P(p,-lp,-2 ...PO), i.e. P(* * (~ ~ - 2 . . .PO)) , forming a
cluster of 4 processors, must be in the same sub-
Butterfly. Therefore, the smallest sub-Butterfly is size
4. This is the immediate result from the fact that the
n-Butterfly can only be divided into n - 2 pairs of
disjoint (n - 1)-Butterflies stated earlier. To explicitly
identify the SEs in a d-Butterfly, we need the following
additional definition:

Definition 4: A Ic-complement of an i-bit Don't-
Care string * (p a-1 ...p o), Ck[*(pi-l ... PO)], is defined
as Ck[*(pi-1 ...PO)] = *(pi-1...pk~k....) for O 5 Ic 5
a .

Note that * (p i-1 ... po) = Co[*(pa -l...po)] = *(E
... p o) = Ci[*(pi-l ...PO)]. The SEs utilized by a d-
Butterfly are thus derived as follows.

Theorem 4: The d-Butterfly *(l)*(id-2)...*(iO),
where d 2 2, consists of sE(*(id-2)...*(il>*(;O))t for
0 5 t 5 n - 1, and SE(*(id-2) ... Ck[*(ij)] ... *
for all j = 0 to d - 2 and Ic = 1 to ij - 1 , where

- -

-

l=j-1 . t = k+CI=, 2 1 .

Proof: see [IO]. W

Example 3: The 3-Butterfly **(OO)* in a 4-
Butterfly consists of ,SE(*(OO)*)t for t = 0...3, and
SE(*(Ol)*)t for t = 2, which are shown as solid
squares in Fig. 2.

Although the relationship between the n-Butterfly
and a hypercube is riot as evident as the n-icube.
the n-Butterfly can siill be represented by the links
in the corresponding direct hypercube. We map
an n-Butterfly onto an (n - 2)-cube in which each
link represents 4 SEs in the n-icube. Accord-
ing to Theorem 4, there exists a link represent-
ing SE(**(pn-2. ..PO)) and SE(*Ck [*(pn-2.. . P O)]) con-
necting the cluster P(**(p,-2 ...PO)) and the cluster
P(*Ck[*(p,-2 ...PO)]) along dimension k where 1 5 IC 5

n - 2. The mapping is used for the purpose of easily
characterizing the grouping property of processors in
the n-Butterfly. As in the n-icube, it is easy to verify
that the SEs of a d-Butterfly essentially correspond
to the links incident to the processors of the d-cube
in the coirresponding direct n-cube. Fig. 4 shows the
mapping of a 4-Butterfly onto a direct 4-cube. The
SEs of the %Butterfly **(OO)* are shown as solid lines
in Fig. 4.

3 Fault Tolerance Analysis
This section examines the effects of faulty SEs

to the subsystem availability. The effects of a single
faulty SE are analyzed first. The single fault analysis
is then extended to the multiple fault analysis.

From Theorem 2, the d-icube P(qn-l ...q;...qo) con-
tains SE(p,-z ...p o)a, if q j = pj or * for 0 < j < i and
q j = p j - 1 or * for i < j 5 n - 1. In other words,
any sub-icube containing (p , - ~ ...p i0pi-l ...PO), or
(p,-2 ...p i1pi-l ...p o) , or both employs SE(p,-2 ...po)j.
The processors in (p,-2 . . . p ; * p i - 1 ...PO) are the ones
connected by the link associated to SE(pn-2 ...po)i
in the n-cube mapped from an n-icube. The im-
pact of a faulty SE(p,-2 ...po)i to the sub-icube avail-
ability is identical to that of two faulty processors,
(p,-2...piOpi_1...p0) and (p,_2 ...pi 1pi-l ...PO) for 0 5
i 5 n - 1. We know that a processor belongs to C:
d-icqbes since these C: d-icubes containing a proces-
sor, p,-l ...pol can be established by replacing d of the
n bits with *'s and there are C: different ways to do
it. Therefore, a faulty processor destroys C: d-icubes.
Similarly, based on the mapping of an n-icube onto an
n-cube, the number of d-icubes destroyed by a faulty
SE can be obtained as 2C2-C:1,'. Therefore, a faulty
SE has a greater impact on the sub-icube availability
than a faulty processor.

For the Butterfly networks, we have the following
resul t s.

Theorem 5: Given a faulty SE(p,-2 . . . p , ~) ~ in an n-
Butterfly, the d-Butterflies, *(1)*(i d - 2) . . .*(ij) ...*(io),
are destroyed if (1) pi,-1tt , ... pt , E *(ij) for all j =
0 to d - 2 and (2) there exists a j such that t j 5 t <
t j+l - 1 and pik--l+tk ... pt , E * (i k) for 0 k < j and
j < k 5 d - 2, and pa,-l+t, ... p t , E Ct[*(ij)], where
n - 1 = i l and t k = ir. I=d-2 I=k-1

Proof: see [lo] .
It may be seen from Theorem 5 that SE(pn-2.. . p ~) ~

in an n-Butterfly is contained in the 2-Butterfly
(1)(pn-2 ... PO) or *(~)*(P,-z ... p tp t_ l ... P O)
= *(1)Ct[*(p,-2 ... pa)]. It also indicates that
the impact of a faulty SE(p,-2...~0)~ to the sub-
Butterfly availability is identical to that of proces-
sors *(l)*(p,-2 ...p 0) or *(l)Ct[*(p,-z ...PO)] if the

-

647

faulty SE is not in the first or the last stage. In
other words, SE(p,-2 ...po)t destroys both of the 2-
Butterflies, *(1) *(pn - 2.. .PO) and *(1)Ct [* (p , - 2.. .PO)] .
Similarly, the faulty SE in the first or the last stage has
the same fault effect on the sub-Butterfly availability
as a cluster of 4 processors associated with it. Based
on the mapping of an n-Butterfly onto an (n- 1)-cube,
the number of &Butterflies destroyed by a SE is C::;
if the faulty SE is in stage 0 or n - 1 or 2CyI; - C:Il
otherwise.

The mapping of an n-icube and n-Butterfly onto a
hypercube provides an easy way to characterize the
network. As in the direct binary n-cube, two proces-
sors are said to be an antipodal pair if they cover all
the (n - 1)-icube in an n-icube. The addresses of the
antipodal pair in an n-cube or n-icube differ in all the
bits. There is only one antipode for a specific pro-
cessor in an n-cube or n-icube. However, there are
four antipodes for a specific processor, referred to the
antipodal set, in the n-Butterfly. For example, the an-
tipodal set of processor (0000) in Fig. 4 are processors
in ** (OOO). To formally represent the antipodal set of
a processor in an n-Butterfly, we need the following
definition.

Definition 5: ALT is defined as a function which
alternately complement the bits of p k - l ...PO from the
right to the left. Formally, ALTkk-1 ...pol = q k - 1 ...q0,

where qi and pi are the i th element from the right and
qa = pi if i is odd otherwise qi = pi, for 0 5 i 5 k - 1.

In general, if processors p,-l ...PO and
p,-lALT[p,-z ...pol in an n-Butterfly are faulty, all
the possible (n - 1)-Butterflies will be destroyed since
p,-l ...PO and p,-lALT[p,-z ...pol are always in dif-
ferent (n - 1)-Butterflies. Since the four processors in
cluster P(p,-l ...PO) are in the same sub-Butterfly, two
faulty processors from cluster P(p,-1 ...PO) and clus-
ter P(p,-lALT[p,-2 ...p 01) will destroy all the (n - 1)-
Butterflies.

Let us define the antipodal pair of SEs in the n-icube
(n-Butterfly) as the two SEs which if faulty will de-
stroy all the possible (n-l)-cubes ((n-l)-Butterflies).
Each SE in an n-icube or n-Butterfly may have more
than one corresponding antipodal SEs. In general,
the problem of finding antipodal SEs of a particular
SE becomes a little complicated since the faulty SEs
can be located in any level or stage. Since a faulty SE
has the same impact to the subsystem availability as
two processors in an n-icube, the antipodal SEs of a
particular SE can be obtained as follows.

For example, ALT[pmpipo] = p3P2plfi.

*The problem of finding a set of links in an n-cube that
destroy all the (n - 1)-cube is different. From [Ill, it is known
that three l i n k s are sufficient.

Theorem 6: The antipodal set of an SE(p,-2 ...
P O) ~ in an n-icube consists of SE(= ... pi p,-1 ...
p J + l p J - l ... z)j for j = O . . i - 1, SE(= ... E=
... p o) i , and SE(pn-2 ... pj+l p j -1 ... pi * pi-1 ... p 0) j
for j = i + l . .n - 1.
Proof: see [IO].

The antipodal set of an SE(p,-2 ...PO); is es-
sentially the set of SEs covered by the 1-cube,
(p a - ~ ...pi * pi-1 ...PO). Note that (=...pa * =...E)
is the antipodal processors of processors (p,-2 . . .pi *
pi-1 ...PO) connected by the link corresponding to
SE(p,-2 ...Po) i. According to the mapping between
an n-icube and a direct n-cube, the antipodal set of
an SE(p,-z.. .PO); includes the SEs corresponding to
the links incident to (=...E*pi_l...E). Obviously,
in the worst case, the number of faulty SEs which can
be tolerated while maintaining a fault-free (n- 1)-cube
in an n-cube is one.

Theorem 7: The antipodal set of an S E (P , - ~ ...
po) t in an n-Butterfly, where 1 5 t 5 n - 2, consists
of SE(ALT[*(p,- 2 . . .pt)]ALT[*(pt- 1.. .po)])i for i =

-*-
--

- -- - - - -

O..n - 1, SE(ALT[*(p,-2 ...pt)] Ci[ALT[*(pt-l .. .po)]])i
for i = 1 .. t - 1, and SE(Ci[ALT[*(p,-2 ... Pt 113
ALT[*(pt-l ... po)])i+$ for i = 1 .. n - 2 - t .

H Proof: see [IO].
Note that the antipodal set of SE(p,-2...p0)~ can

also be obtained by deriving the intersection of SEs
in all the (n - 1)-Butterflies that do not contain
SE(pa-2 ...p o) t , i.e. the intersection of SE[*,-2 ... *i+l
i(pipa-1) *i-2 ...*o]j for all j = 0 to n - 1 and
SE[*,-2 ... *i+l *(pipi-1) *i-2 ...*& for 1 5 i 5 t - 1
and t + 1 5 i 5 n - 2. Obviously, the task of deriving
the antipodal set of an SE is tedious. However, map-
ping an n-Butterfly onto a direct n-cube facilitates this
task. For example, if SE(O11)l in Fig. 4 is faulty, all
the 3-Butterflies containing any processor of **(011)
and ~ (0 1 0) are destroyed. Thus, the antipodal set of
SE(O11)i are marked as solid lines in Fig. 4.

Now we discuss the antipodal set of SE(pn-2 ...po)k

while k = 0 or n - 1. If SE(p,-z ...p o) k is faulty,
all the (n - 1)-Butterflies containing **(pn-2...po)
are destroyed. The antipodal set of **(pn-2...p0)
are *ALT[*(pn_2...po)]. Thus, the antipodal set of
SE(p,-z . . . p o) k are all the SEs corresponding to the
links incident to *ALT[*(pn-2...p0)] in the mapped n-
cube. For example, the antipodal set of SE(000)o in
Fig. 4 are SE[*(OlO)]o, SE[*(010)]3, SE[*(O1)*]1, and

As it has been shown that the antipodal set of a
SE(p,-2 ...PO) i is essentially the set of SEs covered by
the 1-cube, (E ...pi*pi_l...z). The maximum num-
ber of faulty SEs, IC(71,n - l) , that can be tolerated
while maintaining a fault-free (n - 1)-cube in an n-

SE[**(0 1)] 2 .

648

cube is one. By usiing the divide-and-conquer tech-
nique, we can show that 2m - 1 faulty SEs can be
tolerated while maintaining a fault-free (n - m)-cube
in an n-cube. However, if n is much larger than m, we
derive a better result as shown below.

Theorem 8: The maximum number of faulty pro-
cessors that can be tolerated in an n-cube while main-
taining a fault-free (71 - 2)-cube is the minimum pos-
itive integer r - 1 such that

r - 1 (Lr/:!J - 1) ’
Proof: See [I l l .

Remember that a faulty SE has the same effect on
the sub-icube availability as two processors connected
by the associated link in the mapping. We can imme-
diately obtain the K(n, n - 2) as follows.

Theorem 9: The K (n , n - 2) of the n-icube is the
minimum positive integer r - 1 such that

Proof: see [IO].
For example, an 8-icube can tolerate four SE faults

while still maintaining a fault-free 6-icube. A 15-cube
can tolerate five SE faults while still maintaining a
fault-free 13-icube. Now we show the similar results
for the Butterfly networks as follows.

Theorem 10: The antipodal set of an SE(p,-2
... po) t in an n-Butterfly consists of SE(ALT[*(p,-2
... pt)]ALT[*(pt-l ... p~)])d for i = O..n - 1,
SE(ALT[*(p,-z ... ,pt)]Ci[ALT[*(pt-~ ... PO)]])^ for
i = l..t-1, and SE(C‘d[ALT[*(p,_2 . . .p t)J] ALT[*(pt-l
... po)]) i+ t for i = l . .n - 2 - t .

Proof: see [IO].
Note that the antipodal set of SE(p,-2 ...po)d can

also be obtained by deriving the intersection of SEs
in all the (n - 1)-Butterflies that do not contain
SE(p,-2.. .po)i , i.e., the intersection of SE(*“-2.. . *i+l

*(pi=) * i - 2 ...* 0)j for all j = 0 to n - 1 and
SE(*,-2 ... *i+l *(pipi-1) * i - 2 ...*o) i for 1 5 i 5 t - 1
and t + 1 5 i 5 n - 2.

Theorem 11: The K(n, n - 2) of the n-Butterfly
is the minimum posit#ive integer T - 1 such that

Proof: see [IO].

K(n, n - m) 2 2m-2:tK(n - m + 2, n - m).
Corollary 1:

4 Conclusions
We have shown that the indirect binary n-cube

has more partitionability than the Butterfly network.
Via the proposed mapping scheme, we derived the
number of faulty SEs in an indirect binary n-cube or
a Butterfly network of 2” processors that can be tol-
erated while still maintaining a subsystem of a given
size. We have shown that a switching element has
the same fault tolerance effect on the subsystem avail-
ability as 2 (4 or 8) processors in the indirect binary
n-cube (Butterfly network).

References
[l] C. L. Wu and T. Y. Feng, “On a Class of Mul-

tistage Interconnection Networks,” IEEE Trans.
on Computers, vol. C-29, no. 5, pp. 694-702, Aug.
1980.
W. Gropp and E. Lusk, “Users Guide for the
ANT, IBM SPx DRAFT,” Technical Report
ANL/MCS-TM-00, Argonne National Labora-
tory, Argonne, IL, October 1994.
C.E. Leiserson et. al., “The Network Arcitecture
of the Connection Machine CM-5,” In Proc. ACM
Symposium on Parallel Algorithms and Architec-
tures, pp. 272-285, 1992.
BBN Advanced Computer Inc., Inside the
TCdOOO Computer, BBN Advanced Computer
Inc., Cambridge, MA, February 1990.
L. N. Bhuyan, Q. Yang, and D. P. Agrawal, “Per-
formance of Multiprocessor Interconnection Net-
works,” IEEE Computer, vol. 22, no. 2, pp. 25-37,
February 1989.
H. 3 . Siegel, “The Theory Underlying the Parti-
tioning of Permutation Networks,’’ IEEE Trans-
actions on Computers, vol. C-29, no. 5, pp. 791-
800, September 1980.
H. J . Siegel, Interconnection Networks for Large-
Scale Parallel Processing: Theory and Case Stud-
ies, New York, NY: McGraw-Hill Publishing
Company, 1990.
W. Lin and C. L. Wu, “A Distributed Re-
source Management Mechanism for a Partition-
able Multiprocessor System,” IEEE Transactions
on Computers, vol. 37, no. 2, pp. 201-210, Febru-
ary 1988.
L. M. Li, Y . Gui, and S. Moore, “Perfor-
mance Evaluation of Switch-Based Wormhole
Networks,” In Proc. International Conference on
Parallel Processing, pp. 1-32-40, 1995.
Y. Chang, “Processor Allocation and Fault Tol-
erance in Multiprocessors,” Ph. D. Dissertation,
Texas A&M University, 1995.
M. Livingston, Q. Stout, N. Graham, and
F. Harary, “Subcube Fault Tolerance in Hyper-
cube,” Technical Report CRL-TR- 12-87 , Univer-
sity of Michigan, Ann Arbor, MI, 1987.

Proof: see [IO].

649

