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Abstract - Partitionability allows the creation 
of many physically independent subsystems, each of 
which retains an identical functionality as its parent 
network and has no communication interference with 
other subsystems. We show that different permutation 
functions connecting the processors and the switches 
in the last stage of networks result in different par- 
titionability. Based on a novel mapping scheme of 
MINs onto the hypercube structure, we show that the 
switches play a more important role on the subsys- 
tem availability than the processors. Subsystem fault 
tolerance of this class of MINs is also analyzed. 

1 Introduction 
Numerous MINs have been proposed for con- 

necting multiple nodes in a multiprocessor. MIN’s 
increasing popularity is related to their low cost com- 
pared with that of a full crossbar at a reasonable band- 
width. A class of MINs including baseline networks, 
regular SW banyan networks with spread and fanout 
of 2, indirect binary n-cube networks, and Omega net- 
works have been shown to be topologically equivalent 
[l]. The IBM SP1/2 [2], CM-5l [3], and the BBN But- 
terfly [4] are good examples of multiprocessors that 
employ a MIN [5]. 

In a multiprocessor system, there is a possibility 
that a single task will degrade other tasks’ executions 
by creating a hot spot in switching elements (SEs) and 
links. This situation can be further aggravated by a 
bad processor allocation scheme that does not utilize 
the interconnection network efficiently and uniformly. 
Therefore, it is advantageous to schedule the indepen- 
dent tasks to different portions of the system such that 
there is no communication interference among them. 

The underlying theory of partitioning permutations 
is addressed in [6]. The partitionability of the baseline 
network, the generalized cube network, the indirect 
binary n-cube network, and the Omega network has 
been addressed in [7, 8, 91. However, the impact on 

]The fat-tree architecture used in CM-5 is actually a MIN. 

the network partitionability of different physical con- 
nections between processors and SEs in the last stage 
is generally ignored. The partitionability of two rep- 
resentative networks with 2n processors, namely the 
indirect binary n-cube (called n-icube) and the Butter- 
fly network (called n-Butterfly), is analyzed and com- 
pared in this paper. 

The remainder of this paper is organized as fol- 
lows. In Section 2, The partitionability of two groups 
of MINs based on the permutation functions between 
the processors and switches in the last stage of the 
networks is studied. A novel mapping scheme of these 
two groups of MINs onto the hypercube is developed. 
In Section 3, the SE fault tolerance analysis is given, 
Concluding remarks are given in the final section. 

2 Partitionability of MIN 
The permutation functions describing the con- 

nections between the processors and SEs in the last 
stage of an n-icube and an n-Butterfly are the ”in- 
verse shuffle” connection and ” trivial” connection, re- 
spectively. Figs. 1 and 2 illustrate the interconnections 
of a 4-icube and a 4-Butterfly, respectively. In Fig. 1, 
processors 0 to 7 form a subnetwork which does not 
interfere with the other part of the network. The cor- 
responding processors in the 4-Butterfly of Fig. 2 are 
processors 0 to 3 and 8 to 11, shown a t  the top half of 
the network. It can be seen that these eight processors 
in Fig. 2 also form a subnetwork without interference 
to other parts of the network. But, potential hot spots 
may take place on the links between stages 2 and 3. 
Another possible way to form a sub-Butterfly of eight 
processors is shown as solid lines in Fig. 2. Proces- 
sors 0, 8, 1, 9, 6, 14, 7, and 15 can form a subnetwork 
without interference and hot spot links. The n-icube 
and the n-Butterfly differ in partitionabilities that re- 
sult from different permutation functions between the 
last stage and processors. We will show systemati- 
cally that different physical connections between the 
last stage and processors lead to different partition- 
ability. 
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Figure 11: The 4-icube. 

In general, a set of interconnection functions are 
used to  describe the connectivity of the interconnec- 
tion paths between the SEs. A processor in a network 
of 2n processors is represented as P(p,- 1 . .  .plpo).  The 
label of an SE in stage i is ( p n - l . . ~ p l ) i  or (pn-2 ...pO)i. 
The interconnection function of a MIN, Ir [ (pn. - . l . . .p l ) ]  

= ( t n - l  ... t l ) i + l  denotes the link from output port a! 

(0 or 1 )  of S E ( p , - l  . . P I ) {  to  S E ( t n - l  ... t l ) i + l .  For 
consistency, P ( p , - l  . . .PI 0) and P ( p n - l  . . .PI  1) are de- 
noted as I!! l [(pn- l . .  . p 1 ) -  11 and I: l [(pn- l . .  . P I ) -  13 ,  re- 
spectively. The forma,l definition of the n-icube is first 
given as follows. 

Definition 1: The n-icube is defined as follows: 
For the links preceding SEs in stage i (0 5 
i 2 IZ - I), Nio_, [ (p , - l  ... p i ) i - l ]  = (pn-1.. .0i . . .pi)i  

and N:!l  [ ( p n - l  ...p l ) i -1]  = @,-I . .  . li.. .p& , from 
output ports 0 and 1 of SE(p n- l . . .p l ) i - - l  to  
SE(p,-1 ... Oi . . .p l ) i  and S E ( p , - l  ... l i  . . . p l ) i ,  respec- 
tively. 

For the links between SEs of the last stage and the 
processors, N , - l [ ( p , _ - l . . . p l ) , _ l ]  = P(Op, - l  . . .p  1) and 
N n - l [ ( p n - l . . . p i ) , - l ]  = P( l p n - l  . . .p  I ) ,  from output 
ports 0 and 1 of SE(p, , - l  . . .p  to  P(Op,-l  . . .p  I )  
and P( lp,- 1.. . p l )  , respectively. R 

Because Butterfly inetworks have different connec- 
tions between the last stage and the processors, the 
addresses of processors need to  be renumbered in or- 
der to  implement correctly the n-icube self-routing 
scheme. The SEs are numbered in the same fashion 
as in the indirect n-cube, i.e., as 0 to  2"-l - 1, from 
top to bottom. The processors are numbered 0, 2 " - l ,  

I, 1 + Y - l ,  ..., i, i + 2 " - l ,  ..., 2"-l - 1, 2" - 1 ;  i.e., 
processors Opn-2 ...PO and 1pn-2 ...PO are attached to 
SE(p,-2 . . .po)o.  Thus, (pn-2  .. .pol; is assigned to  an 
SE in stage i as its address. The formal definition of 

1 

Figure 2: The 4-Butterfly. 

the n-Butterfly is given as follows. 
Definition 2: The n-Butterfly is defined as follows: 

For the links preceding the SEs in stage i (0 5 
i 5 n - I ) ,  Bdq- l [ (pn-2 . . .p~) i -11  = ( ~ ~ - 2 . . . O i - - 1 . . . ~ 0 ) i  

and Bdl_l [ (pn-2 . .  . p ~ ) i - - l ]  = (pn--2.. . l i -  1 . .  .PO); from 
output port 0 and 1 of SE(p,-z ...po)a-1 to  
SE(p,-2 ... Oi- 1.. .PO); and SE(p,-2.. . l i -  1.. .po)i ,  re- 
spectively. 

For the links between SEs of the last stage and the 
processors, B ~ - 1 [ ( p n - 2 . . . p ~ ) n - 1 ]  = P(Op,-2 . . .p  0 )  and 
B,- 1 [(pn-z.  I .PO),- 11 = P( lp,- 2 . .  .PO) from output 
ports 0 and 1 of SE(p,-2 . . . p ~ ) , - ~  to P ( 0 p , - 2 . . . p ~ )  
and P(lp,-2 ...PO), respectively. 

The physical connections between stages in these 
two networks are exactly the same. The only dif- 
ference occurs in the permutation functions between 
the SEs of the last stage and the processors. The 
Don't-Care symbol (*) is used to  denote 0 or 1; 
i.e., (Op,-a ...PO) and (lp,-2 . . .pa) can be denoted as 
(*pn-2 ...p 0 ) .  The SEs can be set to  either straight or 
cross state. 

Theorem 1: In an n-icube with the SEs in 
stage i set to  the straight state, P(*,+1...a!i ...*o), 
SE(*,-l ...ai... *j+l  * j - l . . .*o) j  for j = O . . . i -  1 ,  and 
SE(*,-l ...*j+l*j-l...a!i...*O)j for j = i+ l  ... n-1 form 
an (n  - 1)-cube where a! = 0 or 1 and 0 5 i 5 n - 1. 

1 

Proof: see .[IO]. 

Fig. 1 shows an example of a 4-icube with n = 4 
and i = 3. The two 3-icubes shown in Fig. 1 are 
marked by solid and dotted lines. These two 3-icubes 
are obtained by setting the SEs of the last stage to  the 
straight state. There exist n pairs of disjoint indirect 
binary ( n  - 1)-icubes in an n-icube. Theorem 1 can 
be applied recursively to  obtain subcubes of smaller 
sizes. The SEs utilized by a d-icube can be derived as 
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Figure 3: The mapping between SEs of an 4-icube and 
links of a direct 4-cube. 

follows. 
Theorem 2: A d-icube (qn-1...qo)2 for d 2 1 con- 

sists of SE(q,-1 ... q;+lqi-1 ... q0)i  for all i = 0 to 
n - 1. 
Proof: see [IO]. w 

The foregoing theorem simply states that the ad- 
dresses of SEs in stage i employed in a d-icube are ob- 
tained by removing the ith bit of the ternary address 
of the d-icube. As an example, the 2-icube (1*0*) in 
a 4-icube consists of (1) SE(1tO)o; i.e., SEs 4 and 6 of 
stage 0,  (2) SE(1+*)1; i.e., SEs 4, 5, 6,  and 7 of stage 
1, (3) SE(10*)2; i.e., SEs 4 and 5 of stage 2, and (4) 
SE(+O*)S; i.e., SEs 0, 1, 4 and 5 of stage 3. In general, 
a d-icube utilizes d ~ 2 ~ - l + ( n  - d ) ~ 2 ~  SEs, Z d - l  SEs 
from each of the d stages and 2d  SEs from each of the 
other n - d stages. 

Now we illustrate the relationship between a direct 
binary n-cube and an indirect binary n-cube. In an n- 
cube, a link is connected between two nodes if and only 
if their addresses differ in exactly one bit. We label the 
link connected to a processor . . . p  0) along dimen- 
sion i in an n-cube as (p,-1 . . .p  i+lp;-l ...PO) ;. Accord- 
ing to Theorem 2, the SEs employed by P(p,-l . . . p  0) 

are SE(p,-1 . . . p  itlpi-1 . . .po)a. Thus, there is an one- 
to-one mapping between the SEs of an n-icube and 
links of an n-cube. The SEs in stage i of the n-icube 
corresponds to the links along dimension i of the direct 
n-cube. Based on this mapping, the SEs in a d-icube 
of an n-icube are essentially the ones corresponding to 
the links which are incident to the processors of the 
d-icube. 

Example 1: Fig. 3 shows the mapping between 
SEs of a 4-icube and the links of a 4-cube, where the 
SEs are labeled besides their corresponding links. The 
SEs (links) of the 3-icube ( O w * )  are marked as solid 
lines. 

Theorem 3: With the SE(p,-2 . . .po) i  set to 

’Throughout the paper, p ,  denotes a binary bit; i.e., p ,  E 
{ O , l }  and q, denotes a ternary bit; i.e., q, E {0,1, *}. 

the straight state if pi @ pd-1 = 0 and to 
the cross state if pi @ pi-1 = 1 in an n- 
Butterfly (@ is exclusive-or), P(*,- 1.. .ai& 1.. .*o), 
P(*n-l...(ydiji-l.*o), SE(*,_2...a;P;_1...*o)j, and 
SE(*,-2 . . . z z . . . * o ) j ,  for j = l . . .n - 1 and j # i, 
form an (n - 1)-Butterfly, where aiPi-1 = 01 or 00, 
and 1 5 i 5 n - 2. 

Proof: see [IO]. w 
From the above theorem, we shall see that the n- 

Butterfly has less partitionability compared to the TI- 

icube. The two (n  - 1)-Butterflies obtained by Theo- 
rem 3 are completely disjoint. There exist n - 2 pairs 
of disjoint (n - 1)-Butterflies in an n-Butterfly as op- 
posed to n pairs in an n-icube3. 

Fig. 2 illustrates an example with n = 4 and i = 
2. One 3-Butterfly consisting of processors *OO* and 
*11* are shown in solid lines and the other 3-Butterfly 
consisting of processors *01* and *lo* are shown in 
dotted lines. These two 3-Butterflies are obtained by 
setting SEs 0, 1, 6,  and 7 to the straight state and SEs 
2 ,  3 ,  4, and 5 to the cross state in the 2nd stage. 

Theorem 3 can be applied recursively to obtain sub- 
networks of smaller sizes. However, because of the 
characteristics of the Butterfly networks, how to ob- 
tain the subnetworks of smaller sizes in the n-Butterfly 
is not as simple as the n-icube. In order to formally 
represent the subnetworks of an n-Butterfly, we need 
the following definitions. 

Definition 3: The symbol *(i) is defined as a set 
of two i-bit binary strings which are complementary 
to each other, namely *(i) = {pi-1 ...p~,pi_l...E}. We 
refer to *(i) as an i-bit Don’t-Care string. If the value 
of p i -1  ...PO is known, *(i) may be explicitly repre- 

Example 2: The Don’t-Care string *(3) may rep- 
resent the set (000, ill}, (001, 110}, (010, 101}, or 
(011, 100). Here, * (OOO)  and *(111) represent the 
same set, (000, 111). We can see that *(O) and *(1) 
represent (0,  1) which has the same meaning as the 
conventional Don’t-Care symbol (*). If no confusion 
occurs, * is used to denote * ( O )  and *(l) .  We refer to 
*’ as i consecutive *’S. 

Based on the above definition, the processors of the 
two (n - 1)-Butterfly obtained by Theorem 3 can be 
represented as *fl-i-l*(OO)*”l and *n-i-l*(Ol)*i-l 
(1 5 i 5 n - a), which consists of n - 1 
Don’t-Care strings. As a result, a d-Butterfly can 
be obtained by applying Theorem 3 recursively as 

sented as * ( p i - l . . . p o ) .  

*(id- i)*(id-Z)*(id-3). ..*(il)*(&~), where i d -  1 = 1 and 

31f we consider bi-directinal links used in IBM SP1/2, one 
more pair of subnetworks of size 7t - 1 can be formed by using 
turnaround routing. 
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Figure 4: The mapping between SEs of a 4-Butterfly 
and links of a direct 4:-cube. 

j = d - 1  cj=o i j  = n. It essentially states that a d-Butterfly 
is obtained by dividing the n-bit binary string into 
d substrings. Each substring represents a Don't-Care 
string. 

P(P,- 1.. .PO), P(P,Zpn -2.. .PO) , P ( E . .  .E) , and 
P(p,-lp,-2 ...PO), i.e. P(* * ( ~ ~ - 2  . . .PO)) ,  forming a 
cluster of 4 processors, must be in the same sub- 
Butterfly. Therefore, the smallest sub-Butterfly is size 
4. This is the immediate result from the fact that the 
n-Butterfly can only be divided into n - 2 pairs of 
disjoint (n - 1)-Butterflies stated earlier. To explicitly 
identify the SEs in a d-Butterfly, we need the following 
additional definition: 

Definition 4: A Ic-complement of an i-bit Don't- 
Care string * ( p  a-1 ...p o), Ck[*(pi-l  ... PO)], is defined 
as Ck[*(pi-1 ...PO)] = *(pi-1...pk~k....) for O 5 Ic 5 
a .  

Note that * ( p  i-1 ... po)  = Co[*(pa -l...po)] = *(E 
... p o )  = Ci[*(pi-l  ...PO)]. The SEs utilized by a d- 
Butterfly are thus derived as follows. 

Theorem 4: The d-Butterfly *(l)*(id-2)...*(iO), 
where d 2 2, consists of sE(*(id-2)...*(il>*(;O))t for 
0 5 t 5 n - 1, and SE(*(id-2) ... Ck[*(ij)] ... * 
for all j = 0 to d - 2 and Ic = 1 to ij - 1 ,  where 

- -  

- 

l=j-1 . t = k+CI=, 2 1 .  

Proof: see [IO]. W 

Example 3: The 3-Butterfly **(OO)* in a 4- 
Butterfly consists of ,SE(*(OO)*)t for t = 0...3, and 
SE(*(Ol)*)t for t = 2, which are shown as solid 
squares in Fig. 2. 

Although the relationship between the n-Butterfly 
and a hypercube is riot as evident as the n-icube. 
the n-Butterfly can siill be represented by the links 
in the corresponding direct hypercube. We map 
an n-Butterfly onto an (n - 2)-cube in which each 
link represents 4 SEs in the n-icube. Accord- 
ing to Theorem 4, there exists a link represent- 
ing SE( **(pn-2. ..PO)) and SE( *Ck [*(pn-2.. . P O ) ] )  con- 
necting the cluster P(**(p,-2 ...PO)) and the cluster 
P(*Ck[*(p,-2 ...PO)]) along dimension k where 1 5 IC 5 

n - 2. The mapping is used for the purpose of easily 
characterizing the grouping property of processors in 
the n-Butterfly. As in the n-icube, it is easy to verify 
that the SEs of a d-Butterfly essentially correspond 
to the links incident to the processors of the d-cube 
in the coirresponding direct n-cube. Fig. 4 shows the 
mapping of a 4-Butterfly onto a direct 4-cube. The 
SEs of the %Butterfly **(OO)* are shown as solid lines 
in Fig. 4. 

3 Fault Tolerance Analysis 
This section examines the effects of faulty SEs 

to the subsystem availability. The effects of a single 
faulty SE are analyzed first. The single fault analysis 
is then extended to the multiple fault analysis. 

From Theorem 2, the d-icube P(qn-l  ...q;...qo) con- 
tains SE(p,-z ...p o)a,  if q j  = pj  or * for 0 < j < i and 
q j  = p j - 1  or * for i < j 5 n - 1. In other words, 
any sub-icube containing ( p , - ~  ...p i0pi-l ...PO), or 
(p,-2 ...p i1pi-l ...p o ) ,  or both employs SE(p,-2 ...po)j. 
The processors in (p,-2 . . . p  ; * p i - 1  ...PO) are the ones 
connected by the link associated to SE(pn-2 ...po)i 
in the n-cube mapped from an n-icube. The im- 
pact of a faulty SE(p,-2 ...po)i to the sub-icube avail- 
ability is identical to that of two faulty processors, 
(p,-2...piOpi_1...p0) and (p,_2 ...pi 1pi-l ...PO) for 0 5 
i 5 n - 1. We know that a processor belongs to C: 
d-icqbes since these C: d-icubes containing a proces- 
sor, p,-l ...pol can be established by replacing d of the 
n bits with *'s and there are C: different ways to do 
it.  Therefore, a faulty processor destroys C: d-icubes. 
Similarly, based on the mapping of an n-icube onto an 
n-cube, the number of d-icubes destroyed by a faulty 
SE can be obtained as 2C2-C:1,'. Therefore, a faulty 
SE has a greater impact on the sub-icube availability 
than a faulty processor. 

For the Butterfly networks, we have the following 
resul t s. 

Theorem 5: Given a faulty SE(p,-2 . . . p , ~ ) ~  in an n- 
Butterfly, the d-Butterflies, *( 1)*( i d - 2 ) .  . .*( ij) ...*( io), 
are destroyed if (1) pi,-1tt ,  ... pt ,  E *(ij) for all j = 
0 to d - 2 and (2) there exists a j such that t j  5 t < 
t j+l  - 1 and pik--l+tk ... pt ,  E * ( i k )  for 0 k < j and 
j < k 5 d -  2, and pa,-l+t, ... p t ,  E Ct[*(ij)], where 
n - 1 = i l  and t k  = ir. I=d-2 I=k-1 

Proof: see [ lo] .  
It may be seen from Theorem 5 that SE(pn-2.. . p ~ ) ~  

in an n-Butterfly is contained in the 2-Butterfly 
*(1)*(pn-2 ... PO) or *(~)*(P,-z ... p tp t_ l  ... P O )  
= *(1)Ct[*(p,-2 ... pa)]. It also indicates that 
the impact of a faulty SE(p,-2...~0)~ to the sub- 
Butterfly availability is identical to that of proces- 
sors *( l)*(p,-2 ...p 0 )  or *( l)Ct[*(p,-z ...PO)] if the 

- 
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faulty SE is not in the first or the last stage. In 
other words, SE(p,-2 ...po)t destroys both of the 2- 
Butterflies, *( 1) *(pn - 2.. .PO) and *( 1)Ct [* ( p ,  - 2.. .PO)] .  
Similarly, the faulty SE in the first or the last stage has 
the same fault effect on the sub-Butterfly availability 
as a cluster of 4 processors associated with it. Based 
on the mapping of an n-Butterfly onto an (n- 1)-cube, 
the number of &Butterflies destroyed by a SE is C::; 
if the faulty SE is in stage 0 or n - 1 or 2CyI; - C:Il 
otherwise. 

The mapping of an n-icube and n-Butterfly onto a 
hypercube provides an easy way to characterize the 
network. As in the direct binary n-cube, two proces- 
sors are said to be an antipodal pair if they cover all 
the ( n  - 1)-icube in an n-icube. The addresses of the 
antipodal pair in an n-cube or n-icube differ in all the 
bits. There is only one antipode for a specific pro- 
cessor in an n-cube or n-icube. However, there are 
four antipodes for a specific processor, referred to the 
antipodal set, in the n-Butterfly. For example, the an- 
tipodal set of processor (0000) in Fig. 4 are processors 
in ** (OOO).  To formally represent the antipodal set of 
a processor in an n-Butterfly, we need the following 
definition. 

Definition 5: ALT is defined as a function which 
alternately complement the bits of p k - l  ...PO from the 
right to the left. Formally, ALTkk-1 ...pol = q k - 1  ...q0, 

where qi and pi are the i th element from the right and 
qa = pi  if i is odd otherwise qi = pi, for 0 5 i 5 k - 1. 

In general, if processors p,-l ...PO and 
p,-lALT[p,-z ...pol in an n-Butterfly are faulty, all 
the possible ( n  - 1)-Butterflies will be destroyed since 
p,-l ...PO and p,-lALT[p,-z ...pol are always in dif- 
ferent ( n  - 1)-Butterflies. Since the four processors in 
cluster P(p,-l ...PO) are in the same sub-Butterfly, two 
faulty processors from cluster P(p,-1 ...PO) and clus- 
ter P(p,-lALT[p,-2 ...p 01) will destroy all the (n -  1)- 
Butterflies. 

Let us define the antipodal pair of SEs in the n-icube 
(n-Butterfly) as the two SEs which if faulty will de- 
stroy all the possible (n-l)-cubes ((n-l)-Butterflies). 
Each SE in an n-icube or n-Butterfly may have more 
than one corresponding antipodal SEs. In general, 
the problem of finding antipodal SEs of a particular 
SE becomes a little complicated since the faulty SEs 
can be located in any level or stage. Since a faulty SE 
has the same impact to the subsystem availability as 
two processors in an n-icube, the antipodal SEs of a 
particular SE can be obtained as follows. 

For example, ALT[pmpipo] = p3P2plfi. 

*The problem of finding a set of links in an n-cube that 
destroy all the (n  - 1)-cube is different. From [Ill, it  is known 
that three l i n k s  are sufficient. 

Theorem 6: The antipodal set of an SE(p,-2 ... 
P O ) ~  in an n-icube consists of SE(= ... pi  p,-1 ... 
p J + l p J - l  ... z)j for j = O . . i -  1, SE(= ... E= 
... p o ) i ,  and SE(pn-2 ... pj+l p j -1  ... pi * pi-1 ... p 0 ) j  
for j = i + l . .n  - 1. 
Proof: see [IO]. 

The antipodal set of an SE(p,-2 ...PO); is es- 
sentially the set of SEs covered by the 1-cube, 
( p a - ~  ...pi * pi-1 ...PO). Note that (=...pa * =...E) 
is the antipodal processors of processors (p,-2 . . .pi * 
pi-1 ...PO) connected by the link corresponding to 
SE(p,-2 ...Po) i. According to the mapping between 
an n-icube and a direct n-cube, the antipodal set of 
an SE(p,-z.. .PO); includes the SEs corresponding to 
the links incident to (=...E*pi_l...E). Obviously, 
in the worst case, the number of faulty SEs which can 
be tolerated while maintaining a fault-free (n- 1)-cube 
in an n-cube is one. 

Theorem 7: The antipodal set of an S E ( P , - ~  ... 
po) t  in an n-Butterfly, where 1 5 t 5 n - 2,  consists 
of SE(ALT[*(p,- 2 . .  .pt)]ALT[*(pt- 1.. .po)])i for i = 

-*- 
-- 

- -- - -  - - 

O..n - 1, SE(ALT[*(p,-2 ...pt)] Ci[ALT[*(pt-l .. .po)]])i 
for i = 1 .. t - 1, and SE(Ci[ALT[*(p,-2 ... Pt 113 
ALT[*(pt-l ... po)])i+$ for i = 1 .. n - 2 - t .  

H Proof: see [IO]. 
Note that the antipodal set of SE(p,-2...p0)~ can 

also be obtained by deriving the intersection of SEs 
in all the ( n  - 1)-Butterflies that  do not contain 
SE(pa-2 ...p o) t  , i.e. the intersection of SE[*,-2 ... *i+l 
i(pipa-1) *i-2 ...*o]j for all j = 0 to n - 1 and 
SE[*,-2 ... *i+l *(pipi-1) *i-2 ...*& for 1 5 i 5 t - 1 
and t + 1 5 i 5 n - 2. Obviously, the task of deriving 
the antipodal set of an SE is tedious. However, map- 
ping an n-Butterfly onto a direct n-cube facilitates this 
task. For example, if SE(O11)l in Fig. 4 is faulty, all 
the 3-Butterflies containing any processor of **(011) 
and ~ ( 0 1 0 )  are destroyed. Thus, the antipodal set of 
SE(O11)i are marked as solid lines in Fig. 4. 

Now we discuss the antipodal set of SE(pn-2 ...po)k 

while k = 0 or n - 1. If SE(p,-z ...p o ) k  is faulty, 
all the ( n  - 1)-Butterflies containing **(pn-2...po) 
are destroyed. The antipodal set of **(pn-2...p0) 
are *ALT[*(pn_2...po)]. Thus, the antipodal set of 
SE(p,-z . . . p  o ) k  are all the SEs corresponding to the 
links incident to *ALT[*(pn-2...p0)] in the mapped n- 
cube. For example, the antipodal set of SE(000)o in 
Fig. 4 are SE[*(OlO)]o, SE[*(010)]3, SE[*(O1)*]1, and 

As it has been shown that the antipodal set of a 
SE(p,-2 ...PO) i is essentially the set of SEs covered by 
the 1-cube, (E ...pi*pi_l...z). The maximum num- 
ber of faulty SEs, IC(71,n - l ) ,  that can be tolerated 
while maintaining a fault-free ( n  - 1)-cube in an n- 

SE[**( 0 1 )] 2 .  
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cube is one. By usiing the divide-and-conquer tech- 
nique, we can show that 2m - 1 faulty SEs can be 
tolerated while maintaining a fault-free ( n  - m)-cube 
in an n-cube. However, if n is much larger than m, we 
derive a better result as shown below. 

Theorem 8: The maximum number of faulty pro- 
cessors that can be tolerated in an n-cube while main- 
taining a fault-free (71 - 2)-cube is the minimum pos- 
itive integer r - 1 such that 

r - 1  ( Lr/:!J - 1 ) ’ 
Proof: See [I l l .  

Remember that a faulty SE has the same effect on 
the sub-icube availability as two processors connected 
by the associated link in the mapping. We can imme- 
diately obtain the K(n,  n - 2) as follows. 

Theorem 9: The K ( n ,  n - 2) of the n-icube is the 
minimum positive integer r - 1 such that 

Proof: see [IO]. 
For example, an 8-icube can tolerate four SE faults 

while still maintaining a fault-free 6-icube. A 15-cube 
can tolerate five SE faults while still maintaining a 
fault-free 13-icube. Now we show the similar results 
for the Butterfly networks as follows. 

Theorem 10: The antipodal set of an SE(p,-2 
... po) t  in an n-Butterfly consists of SE(ALT[*(p,-2 
... pt)]ALT[*(pt-l ... p~)])d for i = O..n - 1, 
SE(ALT[*(p,-z ... ,pt)]Ci[ALT[*(pt-~ ...  PO)]])^ for 
i = l..t-1, and SE(C‘d[ALT[*(p,_2 . . .p t )J]  ALT[*(pt-l 
... po)] ) i+ t  for i = l . .n - 2 - t .  

Proof: see [IO]. 
Note that the antipodal set of SE(p,-2 ...po)d can 

also be obtained by deriving the intersection of SEs 
in all the ( n  - 1)-Butterflies that do not contain 
SE(p,-2.. .po)i , i.e., the intersection of SE( *“-2..  . *i+l 

*(pi=) * i - 2  ...* 0)j for all j = 0 to  n - 1 and 
SE(*,-2 ... *i+l *(pipi-1) * i - 2  ...*o) i for 1 5 i 5 t - 1 
and t + 1 5 i 5 n - 2. 

Theorem 11: The K(n, n - 2) of the n-Butterfly 
is the minimum posit#ive integer T - 1 such that 

Proof: see [IO]. 

K(n,  n - m) 2 2m-2:tK(n - m + 2, n - m). 
Corollary 1: 

4 Conclusions 
We have shown that the indirect binary n-cube 

has more partitionability than the Butterfly network. 
Via the proposed mapping scheme, we derived the 
number of faulty SEs in an indirect binary n-cube or 
a Butterfly network of 2” processors that can be tol- 
erated while still maintaining a subsystem of a given 
size. We have shown that a switching element has 
the same fault tolerance effect on the subsystem avail- 
ability as 2 (4 or 8) processors in the indirect binary 
n-cube (Butterfly network). 
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